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We study the relaxation of a single colloidal sphere which is periodically driven between two nonequilibrium
steady states. Experimentally, this is achieved by driving the particle along a toroidal trap imposed by scanned
optical tweezers. We find that the relaxation time after which the probability distributions have been relaxed is
identical to the decay of the velocity autocorrelation function measured in a steady state. In quantitative
agreement with theoretical calculations the relaxation time strongly increases when driving the system further
away from thermal equilibrium.
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The understanding of thermodynamic processes at small
length scales is of central importance at the interface of phys-
ics, biology, and chemistry. Classical thermodynamics as
originally developed for macroscopic systems with many in-
ternal degrees of freedom cannot be applied to, e.g., molecu-
lar machines, proteins, or micromechanical devices. This is
because at microscopic scales, thermal fluctuations must not
be neglected and the familiar well-defined thermodynamical
quantities have to be replaced by corresponding distributions
of finite width �1–3�. The situation is further complicated
when these systems are driven out of thermal equilibrium as
often encountered within their natural environment. The
treatment of fluctuations in such nonequilibrium situations is
even more difficult since it requires the full knowledge of the
system’s dynamics. Despite considerable progress in deriv-
ing exact relationships which are valid beyond thermal equi-
librium �4–6� a comprehensive theoretical description of
nonequilibrium is still lacking.

Among the huge manifold of nonequilibrium conditions,
nonequilibrium steady states �NESS� are certainly the most
simple conceivable situations, being characterized by a time-
independent probability distribution in the presence of a non-
vanishing probability current. Accordingly, NESS present
ideal conditions for fundamental studies and tests of non-
equilibrium properties �7� on a microscopic scale �8,9�.

In this Rapid Communication we experimentally investi-
gate the relaxation behavior of a single colloidal particle
which is periodically driven between two different nonequi-
librium steady states NESS I and NESS II being created by
scanning optical tweezers. We find that the NESS relaxation
time as defined by the decay of the probability distribution
only depends on the final state but is independent of the
initial one. In addition, we show that this relaxation time is
identical to that obtained by the decay of the velocity auto-
correlation function in the steady-state regime, i.e., after re-
laxation has been completed. In agreement with theoretical
calculations, the relaxation time increases when driving the
system further away from thermal equilibrium.

The experimental setup has been already described else-
where and will be discussed here only in brief �10�. Well-
defined nonequilibrium steady states for a colloidal silica
particle immersed in water with radius a=0.65 �m are cre-
ated by scanning the highly focused beam of a Nd:YAG laser
��=532 nm� along a circle with radius R=1.14 �m �see

Fig. 1�. At rather high scanning frequencies the particle can-
not follow the tweezers motion due to the viscous forces of
the fluid, and it is confined to an effective three-dimensional
toroidal optical trap. At intermediate scanning frequencies,
however, each time the scanning laser focus passes the par-
ticle, a small displacement of the colloid along the scanning
direction is induced. Since individual kicks are not resolv-
able by digital video microscopy �11�, in this regime the
scanning tweezers can be considered as exerting a constant
force f on the particle along the angular coordinate x
�10,12,13�. For a scanning frequency of 200 Hz and a laser
intensity I0�40 mW this leads to a drift velocity of
v�7 �m /s. In addition, the laser intensity is weakly modu-
lated along the toroidal trap with an electro-optical device
whose input signal is synchronized with the scanning motion
of the laser focus. For a periodic intensity modulation
I�x�= I0+�I sin�x� this leads to additional optical gradient
forces, i.e., a static potential V�x�=−

V0

2 sin�x+�� acting on
the particle. The value of � can be controlled by the relative
phase difference between the scanned tweezers motion and
its intensity variation. In total, the colloid is subjected to a
tilted periodic potential U�x�=V�x�− fRx corresponding to a
NESS where f and V�x� can be tuned by I0 and �I, respec-
tively. The driving force f and V�x� are not known a priori

FIG. 1. �Color online� �a� Realization principle of the creation of
a NESS for a colloidal particle by scanning a focused laser beam.
�b� Schematic representation of NESS I and NESS II which corre-
spond to a tilted periodic potential. A sudden change in the driving
force f and phase �=� leads to a redistribution of the related prob-
ability distributions pI

s and pII
s .
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but can be reconstructed via a generalized Boltzmann factor
from the measured stationary probability distribution ps�x�
and the probability current in the system �14�.

The relaxation of a colloidal particle into a NESS is in-
vestigated by periodically toggling between two differing
steady states. This is accomplished by a sudden change in the
driving force f and the phase � according to the protocol

if 0 � t � tI: f I,�I = 0�NESS I� ,

if tI � t � tI + tII: f II,�II�NESS II� . �1�

Unless otherwise stated, V0 is kept constant at
V0�100 kBT. The duration times tI and tII are chosen suffi-
ciently long to allow the system to reach the corresponding
stationary probability distributions pI

s and pII
s . The entire pro-

tocol is typically repeated up to 800 times during each ex-
periment to obtain adequate statistical averages.

To illustrate the principle of our experiments, we first dis-
cuss the situation where NESS II is close to thermal equilib-
rium. This is achieved by applying a rather weak driving
force f II�4 kBT /�m. Accordingly, U�x� exhibits a potential
well of about 80 kBT where the particle remains strongly
localized, thus closely resembling equilibrium conditions
�locked state�. This is clearly seen by the trajectory �solid
line� in Fig. 2�a� which is confined to a small range of x
values. In contrast, NESS I has a much stronger force
f I�53 kBT /�m. Therefore, U�x� exhibits no local minimum
and the particle is free to drift along the entire torus �running
state�.

Because of the superimposed Brownian motion, the par-
ticle trajectory varies between each cycle of the protocol.
These fluctuations are taken into account by considering the
probability distribution p�x , t�, i.e., the probability of finding
the particle at time t at position x. The measured p�x , t� ob-
tained from about 800 cycles of the protocol is shown as
gray scaled background of Fig. 2�a�. For −1� t�0 s the
particle has relaxed to NESS II where it is localized inside
the deep potential minimum. The corresponding strongly
peaked steady-state probability distribution pII

s is shown as
closed bars in Fig. 2�b�. Upon suddenly switching to NESS I

at t=0 s, the particle starts to circulate along the entire tor-
oidal trap; this leads to a broadening and a shift of the maxi-
mum in p�x , t�. The damped oscillatory behavior of
p�x=const, t� is typical for the relaxation into a nonequilib-
rium steady state. This is in contrast to the situation at t
=5 s when the protocol switches back to the equilibriumlike
conditions of NESS II. Here, p�x=const, t� monotonically
approaches its final value pII

s . It should be noted that the
relaxation from NESS I into NESS II proceeds much more
rapidly than into the other direction.

To quantify our findings we calculate the mean drift ve-
locity �v�t��= � x�t+�t�−x�t−�t�

2�t �, which is obtained by averaging
the actual particle velocity v�t� over several hundred cycles
of the protocol. Since the length scale over which the poten-
tial U�x� varies is more than 1 order of magnitude larger than
the maximal particle displacement between two consecutive
��t=33 ms� video frames, �v�t�� can be obtained from the
experimentally determined trajectories. The symbols in Fig.
3�a� show �v�t�� for the same data set as in Fig. 2. After
switching to NESS I, �v�t�� is a decaying oscillatory function
which converges to the corresponding mean steady-state ve-
locity. For t	1 s it can be well described by an exponen-
tially damped sinusoidal function �solid line� with decay
time 
=1.4�0.2 s and the oscillation period given by the
mean particle revolution time TR=0.9 s. Similar as above,
�v�t�� for the relaxation into the equilibriumlike NESS II is
purely exponential with a decay time of 0.3 s.

In order to understand how the relaxation into a NESS
compares with that into thermal equilibrium we consider the
relaxation time 
r

eq of an overdamped Brownian particle into
a parabolic potential. For this Uhlenbeck-Ornstein process
the relaxation time is given by �15,16�


r
eq =

6��a

k
, �2�

where � is the viscosity of the solvent, k is the potential
curvature, and a is the particle radius. Obviously, 
r

eq is en-
tirely determined by the state into which the relaxation oc-
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FIG. 2. �Color online� �a� Particle trajectory �solid line� and
p�x , t� as gray scaled background. Dashed vertical lines indicate the
transitions between two different NESS with durations tI=5 s,
tII=2 s and a phase difference �II=�. �b� Normalized steady-state
probability distributions of NESS I �open bars� and NESS II �closed
bars�.
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FIG. 3. �Color online� �a�,�c� Open symbols: mean drift velocity
�v�t�� after switching from NESS II to NESS I and vice versa
�f I�53 kBT /�m, �I=0�. The NESS II parameters are given in
Table I �a�: �i�, �c�: �iv�. Solid line: exponentially damped sinusoidal
function. �b�,�d�: Corresponding potentials �inset� and steady-state
distributions of NESS II.
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curs and independent of the initial conditions. In order to
investigate whether this holds also for relaxation processes
into nonequilibrium states, we systematically vary the initial
NESS II �by changing f II and �II� and study the relaxation
into the identical final NESS I �same parameters as in Fig. 2�.
As an example, Fig. 3�c� shows the relaxation for
f II�52 kBT /�m and �II=�. It should be realized that al-
though the steady-state distribution of the initial state in Figs.
3�b� and 3�d� is rather different, the decay of the mean drift
velocity is—within our experimental errors being caused by
the finite number of trajectories and small optical drifts—
identical. This is also seen in Table I, which summarizes five
relaxation experiments from different NESS II into the iden-
tical NESS I. Within our experimental accuracy we observe
the same relaxation time 
r=1.6�0.2 s. At least in case of
the specific NESS as considered here, this suggests that the
relaxation time only depends on the final state. We confirmed
the independence of the relaxation time for a variety of dif-
ferent NESS I conditions. Due to technical details all these
experiments were performed in the running regime.

According to the fluctuation dissipation theorem, the tem-
poral decay of fluctuations does not depend on whether they
are imposed by an external force or spontaneously generated
by the system itself. However, it is important to realize that
this identity is only valid in or close to thermal equilibrium
�17�. Therefore it is not a priori clear whether in a driven
system �as considered here� 
r, i.e., the decay time in re-
sponse to a sudden change in the external driving force, is
identical with the decay of the steady-state fluctuations. As
shown in Fig. 4�a� the mean drift velocity autocorrelation
function C�t�= �v�t��v�t�+ t��t�, obtained via a stationary
measurement under NESS I conditions, is an exponentially
decaying sinusoidal function with a decay time of

corr=1.7�0.2 s. Within the experimental error this value is
again identical with the above determined 
r. To test whether
this agreement is generally valid, we performed additional
measurements with different driving forces f and potential
depths V0. In Fig. 4�b� we compare 
corr and 
r as measured
for 40 kBT /�m� f I�87 kBT /�m and V0=100 kBT and
V0=125 kBT, respectively. The good agreement between the
data points and the solid line �slope one� supports that

r=
corr and suggests that �as in equilibrium� the relaxation
time of a NESS can be measured via transient or stationary
measurements.

In order to compare the relaxation time with theory, we
calculate 
r by numerically solving the Fokker-Planck equa-
tion �17�

�tp�x,t� = − �x��0F�x� − D0�x�p�x,t� , �3�

with R as the torus radius and F�x�=− �U�x�
�x the total external

force acting on the particle. The transport coefficients are
assumed to be unaffected by the external driving force �3,9�,
therefore, the free diffusion coefficient D0 and the
mobility �0 are taken from thermal equilibrium. In
units of dimensionless time t̃= �D0 /R2�t�−1t and force

F̃�x�= �R /kBT�F�x� the Fokker-Planck equation reduces to

�t̃p�x , t̃�= L̂xp�x , t̃�. Since the Fokker-Planck operator

L̂x=−�xF̃�x�+�x
2 has no explicit time dependence,

a separation ansatz for the probability distribution
p�x , t̃�=	nexp�−�nt̃�qn�x� leads to the following eigenvalue
equation:

− �nqn�x� = L̂xqn�x� . �4�

The relaxation of an arbitrary given initial probability dis-
tribution is described by the complete set of eigenvalues �n.
However, in the long time limit only the two smallest eigen-
values �0 and �1 are relevant. The stationary solution ps�x� is
given by �0=0 and q0�x�. The real part of �1, R��1��
1

−1

determines the asymptotic time dependence of the relaxation
process. Therefore the relaxation time is 
1. Since Eq. �4�
has no analytical solution, for the determination of the
eigenvalues we have to expand the eigenfunctions into an
orthonormal basis. Due to the periodic nature of the
system a suitable choice is the Fourier series
qn�x�= 1


2�
	lcl

�n� exp�ilx�. A straightforward calculation leads
to

− �nck
�n� = 	

l

Lklcl
�n�, �5�

an eigenvalue equation for the matrix L��Lkl�. In case of
the experimentally realized sinusoidal potential, L is tridi-
agonal �18�. After truncating the size of the matrix to a finite
value its eigenvalues are easily found using standard numeri-
cal algorithms.

Figure 5 shows the calculated 
1 �solid lines� as a func-
tion of the potential depth V0 and for two different driving
forces f . For large V0 the system becomes equilibriumlike

TABLE I. Measured relaxation time of NESS I for different
parameters of the initial NESS II.

f II

�kBT /�m� �II

�v�II

��m /s�



�s�

�i� 4 � 0 1.4�0.2

�ii� 4 0 0 1.6�0.25

�iii� 38 � 3.4 1.6�0.25

�iv� 52 � 9.7 1.9�0.3

�v� 99 � 21 1.6�0.25
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FIG. 4. �Color online� �a� Measured velocity autocorrelation
function �symbols�. The solid line is an exponentially decaying
sinusoidal fit. �b� Relaxation time 
r vs 
corr for different NESS
where the driving force has been varied between 40 and
87 kBT /�m. The open and closed symbols correspond to potential
depths of 125 and 100 kBT, respectively. The straight line has slope
one.
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and the relaxation time asymptotically approaches the
Ornstein-Uhlenbeck result of Eq. �2�. At small V0 the relax-
ation time is only determined by the time scale the particle
needs to diffuse along the toroidal trap, i.e., 
1=D0 /R2.

These two limiting cases are connected via a monotonic
curve. The closed symbols correspond to the experimentally
determined decay time 
corr. The excellent parameter-free
agreement between experimental and numerical results again
supports our assumption that 
corr is equal to 
r �see Fig. 4�
and a posteriori justifies that even for driven colloidal sys-
tems the Fokker-Planck equation, with D0 taken from equi-
librium, is still valid.

In summary, we have investigated the relaxation behavior
of a colloidal particle into a NESS. Our results show that the
NESS relaxation time is independent of the initial conditions
from which the relaxation process starts. In agreement with
calculations we confirm that, in case of a driven colloidal
particle, the nonequilibrium relaxation time is identical to the
decay time of the velocity autocorrelation function. It must
be emphasized that it is not clear yet whether our observa-
tions are generally valid to arbitrary NESS or restricted to
particular situations. We hope that our work will stimulate
further theoretical studies in this direction. It will be also
interesting to perform similar stationary nonequilibrium re-
laxation measurements in systems of sheared polymers �20�
or vesicles �21�.
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FIG. 5. �Color online� Symbols: measured decay times 
corr for
two different driving forces. The solid lines show the parameter-free
numerical prediction for 
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